Intramolecular Free-Radical Ring Closures. II. Structures of Two Bicyclic Lactones*

By Stephen Hanessian,[†] Youssef L. Bennani and Romano Di Fabio

Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, H3C 3V1, Canada

(Received 12 July 1989; accepted 17 October 1989)

Abstract. $C_{14}H_{20}O_6$, isomer A, $M_r = 284.31$, orthorhombic, $P2_12_12_1$, a = 5.537 (9), b = 14.404 (4), c =18.748 (10) Å, $V = 1495 \cdot 2$ Å³, Z = 4, 1.263 Mg m⁻³, λ (Cu K α) = 1.54178 Å. $D_r =$ $\mu =$ 0.79 mm^{-1} , F(000) = 608, T = 296 K, R = 0.035 for783 observed reflections. $C_{14}H_{20}O_6$, isomer B, $M_r =$ 284.31, monoclinic, C2, a = 21.390(5), b = 7.991(3), c = 9.019 (2) Å, $\beta = 109.43^{\circ}$, V = 1453.8 Å³, Z = 4, $D_x = 1.299$ Mg m⁻³, λ (Cu K α) = 1.54178 Å, $\mu =$ 0.82 mm^{-1} , F(000) = 608, T = 296 K, R = 0.047 for1430 observed reflections. During the course of studies in tin-mediated radical cyclizations, the title lactones were obtained in crystalline form. Although spectroscopic assignment based on ¹H NMR and nuclear Overhauser enhancement studies indicated the proposed structures, X-ray analysis was used for confirmation. The five-membered lactone is cis fused to a cyclohexane ring in both isomers. In isomer Athe methyl group α to the lactone carbonyl is *anti* to the ester group, while in isomer B it is syn.

Experimental. The bicyclic products A and B are obtained from the reaction shown below in 79% yield in a 1.4 : 1 ratio respectively.

* A: Methyl (1R,2S,6R,9R)-4,5-isopropylidenedioxy-9-methyl-8oxo-cis-7-oxabicyclo[4.3.0]nonane-2-carboxylate. B: Methyl (1R,2R,6R,9R)-4,5-isopropylidenedioxy-9-methyl-8-oxo-cis-7oxabicyclo[4.3.0]nonane-2-carboxylate.

† Author to whom correspondence should be addressed.

0108-2701/90/050937-03\$03.00

Isomer A, $C_{14}H_{20}O_6$, colorless prism of size $0.16 \times 0.20 \times 0.42$ mm. Unit-cell dimensions from 25 centered reflections in the range $20 < \theta < 25^\circ$. Enraf-Nonius CAD-4 diffractometer, graphite-monochromatized Cu K α radiation, $2\theta_{max} = 100^\circ$. The data were collected in the ω -scan mode, $\Delta \omega = (1.00 + 0.14 \tan \theta)^\circ$, at a scan speed of $4^\circ \min^{-1}$. The orientation was checked every 100 measurements. The intensities of seven standards (checked every hour) presented a maximum fluctuation of $\pm 2.4\%$. 942 measured reflections of which 783 with $I > 3\sigma(I)$. Data corrected for Lp, uncorrected for absorption.

Isomer B, $C_{14}H_{20}O_6$, colorless prism of size 0.15 × 0.30×0.44 mm. Enraf-Nonius CAD-4 diffractomer, Laue symmetry 2/m from 25 centered reflections, 22 $< \theta < 25^{\circ}$ and axial photographs. No systematic absences (besides hkl, $h + k \neq 2n$) were found in data set, consistent with space groups C2, Cm and C2/m. The last two space groups were ruled out by the presence of chiral centers in the compound. Graphite-monchromatized Cu $K\alpha$ radiation was used, $2\theta_{\text{max}} = 140^{\circ}$. The data were collected in the ω -scan mode, $\Delta \omega = (1.00 + 0.14 \tan \theta)^{\circ}$ at a scan speed of 4° min⁻¹. The orientation was checked every 100 measurements. The intensities of six standards (checked every hour) presented a maximum fluctuation of $\pm 3.3\%$. 1480 measured reflections of which 1430 with $I > 3\sigma(I)$. Data corrected for Lp.

The structures were solved using $MULTAN80,\ddagger$ refined on $|F_o|$ by full-matrix least squares. Refinement anisotropic for C, O, isotropic for H atoms, only H(12) in isomer A visible on ΔF map used to calculate idealized positions for the methyl H atoms (C—H 0.95 Å, $B_{iso} = 9.5$ Å²), positions recalculated after each least-squares cycle. For both isomers, the absolute configurations of both isomers were deduced from the known chirality of the asymmetric centers present in the starting material.

© 1990 International Union of Crystallography

[‡] The programs used here are modified versions of: NRC-2, data reduction, NRC-10, bond distances and angles, and NRC-22, mean planes (Ahmed, Hall, Pippy & Huber, 1973); FORDAP, Fourier and Patterson maps (A. Zalkin, unpublished); MULTAN80, multisolution program (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1980); NUCLS, leastsquares refinement (Doedens & Ibers, 1967); and ORTEP (Johnson, 1965).

Table 1. Final atomic coordinates and their e.s.d.'s $(\times 10^4)$ and U_{eq} values (Å² × 10³)

Table 2. Bond distances (Å), bond angles and torsion angles (°) with their e.s.d.'s for A, $C_{14}H_{20}O_6$

$U_{eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_j \cdot \mathbf{a}_j.$					
	x	у	z	$U_{\rm eq}$	C1-
Isomer A					C2-
01	9466 (11)	4628 (4)	- 1470 (2)	94	C3-
O2	6281 (9)	4269 (3)	-2129 (2)	88	C3-
O3	2817 (8)	3389 (2)	505 (2)	69	C4-
04	5074 (8)	4552 (2)	994 (2)	63	C4-
05	2884 (8)	6390 (3)	- 116 (2)	75	C5-
06	2489 (11)	7449 (3)	- 976 (2)	100	C5-
CI	5510 (12)	4830 (4)	- 981 (3)	54	C6-
C2	5052 (15)	3954 (4)	- 533 (4)	61	~
C3	3045 (13)	4126 (4)	0 (3)	60	C2-
C4	3531 (14)	4954 (4)	471 (3)	59	C2-
C5	4779 (12)	5777 (4)	142 (3)	57	C0-
C6	3738 (16)_	6876 (5)	- 689 (4)	73	CI-
C7	6253 (15)	6594 (4)	- 854 (3)	62	<u> </u>
C8	6401 (13)	5624 (4)	- 507 (3)	53	C2-
C11	7334 (16)	4583 (4)	-1544 (3)	64	
C12	7892 (18)	3977 (5)	- 2706 (3)	121	C3-
C14 ·	4134 (12)	3638 (4)	1133 (3)	65	
C15	2433 (17)	3661 (7)	1760 (4)	84	C/-
C16	6203 (18)	2981 (6)	1248 (6)	91	C4-
C17	6939 (19)	6701 (6)	- 1640 (4)	78	Ğ-
Isomer B					C7-
01	6092 (1)	2592	118 (3)	71	C/-
O2	6191 (1)	2662 (5)	2689 (2)	59	05-
O3	8322 (1)	2441 (4)	1354 (2)	50	<u> </u>
04	8675 (1)	1613 (5)	3868 (2)	52	0-
O5	7776 (1)	- 2261 (4)	· 3177 (2)	60	~
O6	6952 (1)	- 4082 (5)	2344 (3)	75	
Cl	7083 (1)	1557 (5)	2039 (3)	43	
C2	7311 (1)	886 (5)	722 (3)	47	
C3	8060 (1)	773 (5)	1298 (3)	47	
C4	8374 (1)	158 (5)	3021 (3)	50	
C5	7892 (1)	- 557 (5)	3765 (3)	49	C2-
C6	7133 (2)	- 2693 (5)	2797 (3)	58	C)-
C7	6739 (2)	- 1269 (5)	3112 (3)	56	- CJ-
C8	7200 (1)	273 (5)	3379 (3)	46	CJ-
C11	6396 (1)	2296 (5)	1468 (3)	50	
C12	5568 (2)	3537 (9)	2315 (6)	88	-C4
C14	8858 (1)	2629 (5)	2777 (3)	53	C4-
C15	8896 (2)	4415 (6)	3289 (4)	70	C4-

1986 (8)

- 1222 (6)

2553 (5)

1883 (6)

70 83

Fig. 1. An ORTEP diagram of isomer A with the H atoms and the atomic numbering. Ellipsoids represent 30% probability.

For isomer A, final R = 0.035, wR = 0.046(weights based on counting statistics), $w = 1/[\sigma^2(F) + 0.00005F^2]$, S = 1.73, (shift/ σ) mean 0.020, max. 0.05. The residual electron density fluctuation on final difference Fourier synthesis gave a general background ranging from -0.19 to $0.16 \text{ e} \text{ Å}^{-3}$.

For isomer *B*, final R = 0.047, wR = 0.053 (weights based on counting statistics), $w = 1/[\sigma^2(F) + 0.00005F^2]$, S = 2.39; (shift/ σ) mean 0.020, max.

C1C2	1.537 (8)	C605	1.367 (8)
C1-C8	1.530 (8)	C606	1.204 (9)
CI-CII	1.504 (9)	C7—C8	1.543 (8)
2—C3	1.515 (10)	C7-C17	1.530 (9)
3-C4	1.508 (8)	C11-01	1.190 (11)
3-03	1.428 (7)	C11-02	1.322 (8)
4	1.504 (8)	C12-02	1.464 (9)
4-04	1.424 (7)	C14-C15	1.507 (11)
	1.528 (8)	C14-C16	1.502 (12)
,	1.454 (7)	C14-03	1.431 (7)
× 01	1.483 (12)	C14-04	1.430 (7)
.0	1.465 (12)	014-04	1-439 (7)
2-C1-C8	110-5 (5)	_C8C7C17	119-0 (6)
2-C1-C11	107.5 (5)	C1-C8-C5	112-4 (5)
38-C1-C11	111.6 (5)	C1C8C7	114-5 (5)
C1—C2—C3	110-3 (5)	C5C8C7	100.0 (5)
2-C3-C4	112.6 (5)	C1-C11-O1	124.9 (6)
2-C3-03	112.4 (5)	C1-C11-O2	111-5 (5)
24C3O3	102.4 (5)	O1-C11-O2	123.6 ໄດ້
3-C4-C5	117.7 (5)	C15-C14-C16	112.3 (7)
3-C4-O4	100.9 (5)	C15-C14-O3	109.2 (6)
5C4O4	109-1 (5)	C15-C14-O4	110.3 (5)
4-05-08	118.9 (5)	C16-C14-O3	110.4 (6)
4-05-05	106.5 (5)	C16-C14-O4	109-1 (6)
8-05-05	104.3 (4)	03-014-04	105.3 (5)
7-06-05	110.4 (6)	C11 - 02 - C12	116-3 (5)
7-06-06	129.3 (7)	C	108-3 (4)
5-6-06	120.2 (6)	C4	106.2 (4)
×	102.1 (5)	C5	108-8 (5)
	114.9 (6)	C ⁵ O ⁵ C ⁰	100 0 (5)
	1149(0)		
C1-C2-C3-O3	- 170-4 (5)	C4-C5-C8-C1	32.5 (7)
C1C2C3C4	- 55.3 (7)	C4-C5-C8-C7	154.4 (5)
C1-C8-C5-05	- 85.8 (5)	C5-05-C6-C7	1.3 (7)
C1-C8-C7-C17	-40.6 (8)	C5-C8-C1-C2	- 50.9 (7)
CI-CI1-02-CI2	- 178.0 (5)	C5C8C7C17	- 160-9 (6)
2-C3-C4-C5	36.4 (8)	C7-C8-C1-C2	- 164-1 (5)
3-03-C14-04	1.9 (6)	C7-C8-C5-O5	36.1 (5)
3-03-CI4-CI5	120-3 (6)	C8-C1-C11-O1	33.2 (9)
3-03-CI4-CI6	- 115.8 (6)	$C_{8} - C_{1} - C_{11} - O_{2}$	- 149.4 (5)
	- 25.5 (8)	20 110 12 20 03-01-01-01	- 24.4 (6)
	38.9 (6)		88.5 (6)
	- 03.6 (6)		22.0 (7)
	- 75-0 (0)	03-07-00-03	22-0 (7)
	142.7 (0)		

0.04. The residual electron density fluctuation on final difference Fourier synthesis gave a general background ranging from -0.11 to $0.10 \text{ e} \text{ Å}^{-3}$. The scattering factors were taken from Cromer & Mann (1968) for O and C, and from Stewart, Davidson & Simpson (1965) for H.

Atomic parameters for isomers A and B are given in Table 1, selected bond distances and angles in Tables 2 and 3.* Figs. 1 and 2 show thermal-ellipsoid plots with the atom numbering for isomers A and B, respectively.

Related literature. The synthesis of butyrolactones from a radical-mediated intramolecular cyclization of a chloroester and an olefin has until recently been a preparatively unexplored reaction, see Giese (1986), Surzur & Bertrand (1988), Curran (1988) and Hanessian, Bennani & Di Fabio (1990).

C16

C17

9495 (2)

6043 (2)

^{*} Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, distances and angles involving the H atoms and a stereoview of the unit cell for both isomers have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52339 (21 pp.). Copies may be obtained through the Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

Table	3.	Bond	angles	(A),	bond	angle	s and	torsion
a	ngle	es (°)	with the	eir e.s.	.d.'s fe	or B, C	$C_{14}H_{20}$	O_6

CI-C2	1.524 (4)	C6-05	1.347 (4)
CIC8	1.541 (4)	C6O6	1.201 (5)
CI-CI1	1.507 (4)	C7C8	1.546 (5)
C^{2}	1.514 (4)	C7-C17	1.532 (6)
C3-C4	1.553 (4)	C11-01	1.207 (3)
C3-03	1.440 (5)	CII_02	1.346 (3)
C4-C5	1.517 (4)	C12-02	1.442 (6)
	1.422 (5)	CI4-C15	1.494 (6)
C5-C8	1.552 (4)		1.531 (5)
C5_C6	1.452 (5)	C14-03	1.416 (3)
C5-05	1.409 (5)	C14-03	1.427 (4)
CoC7	1.490 (3)	04	1.427 (4)
C2-C1-C8	111.5 (2)	C8-C7-C17	120.6 (3)
C2-C1-C11	113.6 (2)	C1-C8-C5	110.8 (2)
C8-C1-C11	114.5 (2)	C1-C8-C7	118.7 (3)
C1-C2-C3	109.3 (2)	C5C8C7	101.9 (2)
C2-C3-C4	114.7 (2)	CI-CI1-O1	126-1 (3)
$C_{2}-C_{3}-O_{3}$	108.2 (2)	C1-C11-O2	110-6 (3)
C4C3O3	102.9 (2)	01-C11-O2	123.3 (3)
C3-C4-C5	115.5 (3)	C15-C14-C16	113.7 (3)
$C_{3}^{-}C_{4}^{-}O_{4}^{-}$	104.3 (2)	C15-C14-O3	109.0 (3)
C5-C4-04	108.9 (3)	C15-C14-O4	109.2 (3)
C4C5C8	118.5 (3)	C16-C14-O3	109.4 (3)
C4C5O5	104.5(2)	C16-C14-O4	111-1 (3)
C8-C5-05	106.5 (2)	03-C14-04	103.9 (3)
C7-C6-05	110.4 (3)	C11-O2-C12	116.2 (3)
C7-C606	128.9 (3)	C3-03-C14	108.6 (2)
05	120.6 (3)	C4-04-C14	105.9 (2)
C6-C7-C8	105.4 (3)	C5C6	111.7 (3)
C6-C7-C17	110.7 (3)		
C1-C2-C3-O3	74.9 (3)	C4-C5C8-C1	9.5 (4)
C1-C2-C3-C4	39.4 (3)	C4-C5C8C7	136-7 (3)
C1-C8-C5-O5	- 107.8 (3)	C5-C8-C1-C11	173-9 (3)
C1-C8-C7-C17	-23.5 (5)	C5C6C7	- 0.3 (4)
C1-C11-02-C1	173.8 (3)	C5-C8-C1-C2	43.2 (3)
C2-C3-C4-C5	11.5 (4)	C5C8C7C17	- 145-3 (3)
C3-03-C14-04	- 33.1 (3)	C7-C8-C1-C2	- 74.0 (3)
C3-03-C14-C15	- 149.4 (3)	C7-C8-C5-O5	19.4 (3)
C3-03-C14-C16	85·6 (3)	C8-C1-C11-O1	- 140-4 (3)
C3-C2-C1-C11	159.3 (3)	C8-C1-C11-O2	42.2 (3)
C3-C4-C5C8	- 37.6 (4)	C8-C5-O5C6	- 12.7 (3)
O3-C3-C4-O4	9.4 (3)	C8-C5-C4-O4	79.2 (3)
C4-04-C14-C15	155.3 (3)	C8-C7-C6O5	13.1 (4)
C4-04-C14-C16	- 78.4 (3)		

We thank 'Le Ministère de l'Education du Québec' for financial support and Professor A. L. Beauchamp for assistance in the collection of data and help in resolution of the structure.

Fig. 2. An ORTEP diagram of isomer B with the H atoms and the atomic numbering. Ellipsoids represent 30% probability.

References

- AHMED, F. R., HALL, S. R., PIPPY, M. E. & HUBER, C. P. (1973). NRC Crystallographic Programs for the IBM/360 System. Accession Nos. 133-137 in J. Appl. Cryst. 6, 309-346.
- CROMER, D. T. & MANN, J. B. (1968). Acta Cryst. A24, 321-324.
- CURRAN, D. P. (1988). Synthesis, 5, 417-439; 6, 489-513.
- DOEDENS, R. J. & IBERS, J. A. (1967). Inorg. Chem. 6, 204-210.
- GIESE, B. (1986). Radicals in Organic Synthesis. Formation of Carbon-Carbon bonds. New York: Pergamon Press.
- HANESSIAN, S., BENNANI, Y. L. & DI FABIO, R. (1990). Acta Cryst. C46, 934–936.
- JOHNSON, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175–3187.
- SURZUR, J.-M. & BERTRAND, M. P. (1988). Pure Appl. Chem. 60(11), 1659-1668.

Acta Cryst. (1990). C46, 939-941

Intramolecular Free-Radical Ring Closures. III. Structure of a Chiral δ -Lactone*

BY STEPHEN HANESSIAN,[†] YOUSSEF L. BENNANI AND ROMANO DI FABIO

Département de Chimie, Université de Montréal, CP 6210, Succ. A, Montréal, Québec, H3C 3V1, Canada

(Received 12 July 1989; accepted 17 October 1989)

Abstract. $C_{26}H_{34}O_5Si$, orthorhombic, $M_r = 454.64$, $P2_12_12_1$, a = 7.425 (3), b = 10.491 (4), c = 32.882 (12) Å, V = 2561.4 Å³, Z = 4, $D_x =$

0108-2701/90/050939-03\$03.00

1.179 Mg m⁻³, λ (Cu K α) = 1.54178 Å, μ = 1.05 mm⁻¹, F(000) = 976, T = 220 K, R = 0.052 for 2075 observed reflections. A triphenyltin hydridemediated intramolecular cyclization of a chloropropionate ester and an α , β -unsaturated ester gave a crystalline lactone. Although spectroscopic assignment based on ¹H NMR and nuclear Overhauser

© 1990 International Union of Crystallography

^{*} Methyl (3*S*,4*R*,6*S*)-6-(*tert*-butyldiphenylsilyloxymethyl)-3-methyl-2-oxo-3,4,5,6-tetrahydro-4-pyranacetate.

[†] Author to whom correspondence should be addressed.